644 research outputs found

    Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

    Get PDF
    In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.Comment: 14 pages (two columns), 13 figures. This work has been submitted to the IEEE Transaction on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Sensor Networks TDOA Self-Calibration: 2D Complexity Analysis and Solutions

    Full text link
    Given a network of receivers and transmitters, the process of determining their positions from measured pseudo-ranges is known as network self-calibration. In this paper we consider 2D networks with synchronized receivers but unsynchronized transmitters and the corresponding calibration techniques,known as TDOA techniques. Despite previous work, TDOA self-calibration is computationally challenging. Iterative algorithms are very sensitive to the initialization, causing convergence issues.In this paper, we present a novel approach, which gives an algebraic solution to three previously unsolved scenarios. Our solvers can lead to a position error <1.2% and are robust to noise

    Beyond Gr\"obner Bases: Basis Selection for Minimal Solvers

    Full text link
    Many computer vision applications require robust estimation of the underlying geometry, in terms of camera motion and 3D structure of the scene. These robust methods often rely on running minimal solvers in a RANSAC framework. In this paper we show how we can make polynomial solvers based on the action matrix method faster, by careful selection of the monomial bases. These monomial bases have traditionally been based on a Gr\"obner basis for the polynomial ideal. Here we describe how we can enumerate all such bases in an efficient way. We also show that going beyond Gr\"obner bases leads to more efficient solvers in many cases. We present a novel basis sampling scheme that we evaluate on a number of problems

    A novel joint points and silhouette-based method to estimate 3D human pose and shape

    Full text link
    This paper presents a novel method for 3D human pose and shape estimation from images with sparse views, using joint points and silhouettes, based on a parametric model. Firstly, the parametric model is fitted to the joint points estimated by deep learning-based human pose estimation. Then, we extract the correspondence between the parametric model of pose fitting and silhouettes on 2D and 3D space. A novel energy function based on the correspondence is built and minimized to fit parametric model to the silhouettes. Our approach uses sufficient shape information because the energy function of silhouettes is built from both 2D and 3D space. This also means that our method only needs images from sparse views, which balances data used and the required prior information. Results on synthetic data and real data demonstrate the competitive performance of our approach on pose and shape estimation of the human body.Comment: Accepted to ICPR 2020 3DHU worksho

    Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition

    Full text link
    While the Transformer architecture has become ubiquitous in the machine learning field, its adaptation to 3D shape recognition is non-trivial. Due to its quadratic computational complexity, the self-attention operator quickly becomes inefficient as the set of input points grows larger. Furthermore, we find that the attention mechanism struggles to find useful connections between individual points on a global scale. In order to alleviate these problems, we propose a two-stage Point Transformer-in-Transformer (Point-TnT) approach which combines local and global attention mechanisms, enabling both individual points and patches of points to attend to each other effectively. Experiments on shape classification show that such an approach provides more useful features for downstream tasks than the baseline Transformer, while also being more computationally efficient. In addition, we also extend our method to feature matching for scene reconstruction, showing that it can be used in conjunction with existing scene reconstruction pipelines.Comment: Accepted to the 26th International Conference on Pattern Recognitio

    Tracking the Motion of Box Jellyfish

    Get PDF
    In this paper we investigate a system for tracking the motion of box jellyfish tripedalia cystophora in a special test setup. The goal is to measure the motor response of the animal given certain visual stimuli. The approach is based on tracking the special sensory structures – the rhopalia – of the box jellyfish from high-speed video sequences. We have focused on a realtime system with simple building blocks in our system. However, using a combination of simple intensity based detection and model based tracking we achieve promising tracking results with up to 95% accuracy

    Multiple Offsets Multilateration : A New Paradigm for Sensor Network Calibration with Unsynchronized Reference Nodes

    Get PDF
    Positioning using wave signal measurements is used in several applications, such as GPS systems, structure from sound and Wifi based positioning. Mathematically, such problems require the computation of the positions of receivers and/or transmitters as well as time offsets if the devices are unsynchronized. In this paper, we expand the previous state-of-the-art on positioning formulations by introducing Multiple Offsets Multilateration (MOM), a new mathematical framework to compute the receivers positions with pseudoranges from unsynchronized reference transmitters at known positions. This could be applied in several scenarios, for example structure from sound and positioning with LEO satellites. We mathematically describe MOM, determining how many receivers and transmitters are needed for the network to be solvable, a study on the number of possible distinct solutions is presented and stable solvers based on homotopy continuation are derived. The solvers are shown to be efficient and robust to noise both for synthetic and real audio data.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Visual Entity Linking: A Preliminary Study

    Get PDF
    In this paper, we describe a system that jointly extracts entities appearing in images and mentioned in their ac- companying captions. As input, the entity linking pro- gram takes a segmented image together with its cap- tion. It consists of a sequence of processing steps: part- of-speech tagging, dependency parsing, and coreference resolution that enables us to identify the entities as well as possible textual relations from the captions. The pro- gram uses the image regions labelled with a set of pre- defined categories and computes WordNet similarities between these labels and the entity names. Finally, the program links the entities it detected across the text and the images. We applied our system on the Segmented and Annotated IAPR TC-12 dataset that we enriched with entity annotations and we obtained a correct as- signment rate of 55.48
    • …
    corecore